Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state.
نویسندگان
چکیده
The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the parasite slows its metabolism and progresses through its developmental cycle at a reduced rate. Isoleucine-starved parasites remain viable for 72 h and resume rapid growth upon resupplementation. Protein degradation during starvation is important for maintenance of this hibernatory state. Microarray analysis of starved parasites revealed a 60% decrease in the rate of progression through the normal transcriptional program but no other apparent stress response. Plasmodium parasites do not possess a TOR nutrient-sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic initiation factor 2α (eIF2α) stress response. Isoleucine deprivation results in GCN2-mediated phosphorylation of eIF2α, but kinase-knockout clones still are able to hibernate and recover, indicating that this pathway does not directly promote survival during isoleucine starvation. We conclude that P. falciparum, in the absence of canonical eukaryotic nutrient stress-response pathways, can cope with an inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient to be provided.
منابع مشابه
Plasmodium falciparum Maf1 Confers Survival upon Amino Acid Starvation
The target of rapamycin complex 1 (TORC1) pathway is a highly conserved signaling pathway across eukaryotes that integrates nutrient and stress signals to regulate the cellular growth rate and the transition into and maintenance of dormancy. The majority of the pathway's components, including the central TOR kinase, have been lost in the apicomplexan lineage, and it is unknown how these organis...
متن کاملGenotyping of C and F Regions of Plasmodium Falciparum EBA-175 in South-East of Iran
Abstract Background and Objective: The Plasmodium falciparum EBA-175, via Sialic acid dependent glycophorin A, binds to red blood cells and thus plays a critical role in cell invasion. Some part of second allele in its gene encoding in FCR-3 (Section F) and CAMP (Section C) can be found. This study aimed to determine the prevalence of Plasmodium falciparum EBA-175KD alleles in southeastern I...
متن کاملClinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملPlasmodium falciparum Malaria Elicits Inflammatory Responses that Dysregulate Placental Amino Acid Transport
Placental malaria (PM) can lead to poor neonatal outcomes, including low birthweight due to fetal growth restriction (FGR), especially when associated with local inflammation (intervillositis or IV). The pathogenesis of PM-associated FGR is largely unknown, but in idiopathic FGR, impaired transplacental amino acid transport, especially through the system A group of amino acid transporters, has ...
متن کاملRED CELLS Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum
The intraerythrocytic malaria parasite derives much of its requirement for amino acids from the digestion of the hemoglobin of its host cell. However, one amino acid, isoleucine, is absent from adult human hemoglobin and must therefore be obtained from the extracellular medium. In this study we have characterized the mechanisms involved in the uptake of isoleucine by the intraerythrocytic paras...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 47 شماره
صفحات -
تاریخ انتشار 2012